

OIML Member State

The Netherlands

Number R49-1/2006-NL1-13.01 revision 6 Project number 13200719 Page 1 of 5

Person responsible: C. Oosterm

Applicant and manufacturer

KROHNE Altometer Kerkeplaat 12 3313 LC Dordrecht The Netherlands

Identification of the

A water meter

certified type Type

OPTIFLUX x000F + IFC300y *

Water meter intended for the metering of cold potable water, model

"OPTIFLUX x300C; OPTIFLUX x000F + IFC300y*", class 1 and 2.

See page 2 and further

This Certificate attests the conformity of the above identified type (represented by the sample(s) identified in the OIML Test Report) with the requirements of the following Recommendation of the International Organization of Legal Metrology (OIML):

R49-1/2006 (E): Metrological and technical requirements

R49-2/2006 (E): Test methods R49-3/2006 (E): Test Report format

*) With x being 1, 2, 4, 5 or 6 and with y being F or W. Remarks

This Certificate relates only to the metrological and technical characteristics of the type of measuring instrument covered by the relevant OIML International Recommendation identified above. This Certificate does not bestow any form of legal international approval.

Important note: Apart from the mention of the Certificate's reference number and the name of the OIML Member State in which the Certificate was issued, partial quotation of the Certificate and of the associated OIML Test Report(s) is not permitted, although either may be reproduced in full.

Issuing Authority

NMi Certin B.V., OIML Issuing Authority NL

17 November 2014

Head Certification Board

NMi Certin B.V. Hugo de Grootplein 1 3314 EG Dordrecht the Netherlands T +31 78 6332332 certin@nmi.nl

This document is issued under the provision that no liability is accepted and that the applicant shall indemnify third-party liability.

The notification of NMi Certin B.V. as Issuing Authority can be verified at www.oiml.org

Parties concerned can lodge objection against this decision, within six weeks after the date of submission, to the general manager of NMi (see www.nmi.nl).

OIML Member State

The Netherlands

Number R49-1/2006-NL1-13.01 revision 6 Project number 13200719 Page 2 of 5

The conformity was established by the results of tests and examinations provided in the associated OIML Test Reports:

- No. R49-1/2003-NL1-06.01 that includes 193 pages (including Annexes);
- No. NMi-12200395-01 that includes 9 pages (including Annexes);
- No. NMi-12200544-01 that includes 9 pages (including Annexes);
- No. NMi-12200544-02 that includes 9 pages (including Annexes);
- No. NMi-13200264-02 that includes 50 pages (including Annexes);
- No. NMi-14200030-01 that includes 50 pages (including Annexes).

Identification of the certified pattern

Water meter intended for metering cold potable water, based on an electromagnetic principle, designed to measure reverse flow, with straight inlet and outlet length, with no flow conditioner and equipped with an electronic calculating/indicating device.

Metrological characteristics:

Type : OPTIFLUX x300C^[1], complete water meter

OPTIFLUX x000F^[1] + IFC300y^[1], combined water meter

Maximum admissible + +

pressure (bar)

Min/max admissible : 0,1/50

temperature (°C)

Orientation : All positions

Environmental class + : C

Power supply :

Type AC DC AC/DC Umax 230 V 24 V 24 V Umin 100 V 12 V 24 V

Frequency 50 – 60 Hz - AC: 50 - 60 Hz

3

With x being 1, 2, 4, 5 or 6 and with y being F or W

OIML Member StateThe Netherlands

Number R49-1/2006-NL1-13.01 revision 6 Project number 13200719 Page 3 of 5

Meter size	DN25	DN32	DN40	DN50	DN65	DN80	DN100
Minimum flow rate Q1 (m³/h)	0,040	0,0625	0,0625	0,10	0,1587	0,254	0,3968
Transitional flow rate Q2 (m³/h)	0,064	0,10	0,10	0,16	0,25	0,40	0,6
Permanent flow rate Q3 (m³/h)	16	25	25	40	100	160	250
Overload flow rate Q4 (m³/h)	20	31,3	31,3	50	125	200	312,5
Nominal diameter (mm)	25	32	40	50	65	80	100
Accuracy Class	+ + + + + 2 + + + + + + + + + + + + + +			+ + +			
Indicating range (m³)[2][4]	99.999 999.999) + + +			
Verification scale interval (m³)[3][4]	+ + +	+ + + -	+ + 0,00	001	+ + + -	+ + +	0,001

Meter size	DN125	DN150	DN200	DN250	DN300
Minimum flow rate Q1 (m³/h)	0,6349	+0,6349	+ -1,0- +	+ +1,6 +	+ +2,5 +
Transitional flow rate Q2 (m³/h)	1,0	1,0	1,6	2,6	4,0
Permanent flow rate Q3 (m³/h)	400	400	+ 1000 +	+ 1600 +	2500
Overload flow rate Q4 (m³/h)	500	500	1250	2000	3125
Nominal diameter (mm)	125	150	200	250	300
Accuracy Class	+ + + +	+ + + +	+ +1+ +	+ + + +	+ + + +
Indicating range (m³) ^{[2][4]}	999.999		9.999.999		+ + + +
Verification scale interval (m³)[3][4]	+ + + + + + + + + + 0,001 + + + + + + + + + +				+ + + +

5

^{+ [2] +} The indicating range is programmable, stated here is the minimum indicating range.

The verification scale interval is programmable, stated here is the maximum value.

The display of the totalizator has 11 digits (including 1 digit for the decimal sign. The format of the totalizator must be such that demands of the indicating range and the verification scale interval are met.

OIML Member State The Netherlands

Number R49-1/2006-NL1-13.01 revision 6 Project number 13200719 Page 4 of 5

Meter size	DN350	DN400	DN450	DN500	DN600
Minimum flow rate Q1 (m³/h) + + +	+ 5,0 + +	+ 8,0+ +	+ 8,0 +	+ +12,6 +	39,375
Transitional flow rate Q2 (m³/h)	8,0	12,8	12,8	20,2	63
Permanent flow rate Q3 (m³/h) + +	+2500	+ 4000 +	+ 4000 +	+ 6300 +	+ 46300 +
Overload flow rate Q4 (m³/h)	3125	5000	5000	7875	7875
Nominal diameter (mm) + + + + +	+ 350+ +	+ 400	+ 450 +	+ +500 +	+600 +
Accuracy Class	. + + + +	. + + + +	+ +1++	+ + + + :	+ + + +
Indicating range (m³)[2][4] + + + +	+ + + +	+ + + +	9.999.999	+ + + + +	+ + + +
Verification scale interval (m³)[3][4]	++++	0	,01	+ + + + -	0,1

Meter size	DN700	DN800	DN900	DN1000	DN1100
Minimum flow rate Q1 (m³/h)	125	125	200	200	200
Transitional flow rate Q2 (m³/h)	200	200	320	320	320
Permanent flow rate Q3 (m³/h)	10000	10000	16000	16000 +	16000
Overload flow rate Q4 (m³/h)	12500	12500	20000	20000	20000
Nominal diameter (mm)	+ 700 + +	+ 800+ +	900 +	† 1000 †	* 1100 *
Accuracy Class	· + + + +	· + + + +	+ + + + +	+ + + +	+ + + + +
Indicating range (m³) ^{[2][4]}	+ + + +	+ + + +	99.999.999	+ + + +	+ + + + +
Verification scale interval (m³)[3][4]	· + · · ·	· + + + +	0,1	+ + + +	+ + + + +

+ + + + + + + + Meter size	DN1200	DN1400	DN1600
Minimum flow rate Q1 (m³/h)	200	312,5	312,5
Transitional flow rate Q2 (m³/h) + +	+ 320+ +	+ 500+ +	+ -500 +
Permanent flow rate Q3 (m³/h)	16000	25000	25000
Overload flow rate Q4 (m³/h) + + +	20000	+31250 +	+ 31250 +
Nominal diameter (mm)	1200	1400	1600
Accuracy Class + + + + + + + +		+ +1 + +	+ + + +
Indicating range (m³) [2][4]	. + + + +	99.999.999	+ + + +
Verification scale interval (m³)[3][4]	+ 0,1 + +	+ + + +	1++++

OIML Member State

The Netherlands

Number R49-1/2006-NL1-13.01 revision 6 Project number 13200719 Page 5 of 5

Electronic revision number

The electronic revision number is used to lay down the software version and the hardware of the instrument. If either changes, the number is updated.

Approved electronic revision numbers: 3.2.4_; 3.2.6_; 3.2.7_; 3.3.0_; 3.3.1_; 3.3.2_; 3.3.3_; 3.3.5_
and 3.3.7_.

The electronic revision number is stored under menu items B3.6 and C5.1.6. See the manual in how to access the parameters.

Software specification:

The first approved version of the water meter didn't have an electronic revision number. The approved software version is identified as:

Main software: 2.2.1. Menu items B3.3 and C5.1.5
User interface: 3.1.0. Menu item B3.4 and C5.2.5
See the manual in how to access the parameters.

Revision History

Revision	Date	Change(s)
Initial	24 May 2013	
1 + + +	8 November 2013	Addition of several meter sizes + + + + + + + + + + + + + + + + + + +
2 + + +	13 December 2013	Addition of several meter sizes
3 + + +	21 May 2014	Addition of electronic output board
4 + + +	5 September 2014	Addition of a meter size
5 + + +	6 October 2014+	Addition of electronic revision number + + + + + + +
6	17 November 2014	Addition of a meter size

5