

OIML Member State

Czech Republic

OIML Certificate No. R49/2013-A-CZ1-24.02

Revision 1

OIML CERTIFICATE ISSUED UNDER SCHEME A

OIML Issuing Authority

Name: Czech Metrology Institute

Address: Okružní 31, 638 00 Brno, Czech Republic

Person responsible: Jan Kalandra

Applicant

Name: GWF AG

Address: Obergrundstrasse 119, CH-6005 Luzern, Switzerland

Manufacturer

Name: GWF AG

Address: Obergrundstrasse 119, CH-6005 Luzern, Switzerland

Identification of the certified type (the detailed characteristics will be defined in the additional pages)

Water meter - ultrasonic, dry dial

sonico NANO

Designation of the module (if applicable)

This OIML Certificate attests the conformity of the above identified type (represented by the sample(s) identified in the OIML type evaluation report) with the requirements of the following Recommendation of the International Organization of Legal Metrology (OIML):

OIML R 49 Edition (year): 2013

For accuracy class (if applicable): 2

This OIML Certificate relates only to metrological and technical characteristics of the type of measuring instrument covered by the relevant OIML Recommendation identified above.

This OIML Certificate does not bestow any form of legal international approval.

The conformity was established by the results of tests and examinations provided in the associated OIML type evaluation report:

- No. 0511-ER-V106-24 dated 20 September 2024 that includes 33 pages including annex 1.
 - Test report No. 6011-PT-SW019-24 that includes 7 pages including annex 1.
- No. 0511-ER-V061-23 dated 29 May 2024 that includes 32 pages including annex 1.
 - Test report No. 6015-PT-P5006-24 that includes 206 pages including annex 1-2.
 - Test report No. 6011-PT-SW008-24 that includes 7 pages including annex 1-2.

The technical documentation relating to the identified type is contained in documentation file:

0511-UL-V061-23

OIML Certificate History

Revision No.	Date	Description of the modification				
-	30 May 2024	Issuing certificate				
Revision 1	20 September 2024	Added new SW				
	'					

The OIML Issuing Authority

RNDr. Pavel Klenovský Head of Certification Body

Date: 20 September 2024

Advisory of the state of the st

Flue

Important note:

Apart from the mention of the Certificate's reference number and the name of the OIML Member State in which the Certificate is issued, partial quotation of the Certificate and of the associated OIML type evaluation report(s) is not permitted, although either may be reproduced in full.

Measuring system description

The water meters type sonico NANO are designed to measure, memorise and display the volume at metering conditions of water passing through the measurement transducer.

The water meters type sonico NANO are ultrasonic water meters with an electronic indicating device.

The water meters type sonico NANO consist of a cast brass body with connecting screw threads, one pair of ultrasonic transducers and the electronic indicating device. The electronic indicating device is formed by LCD display shown volume and flow. The water meter displays the volume resolution of 0.00001 m³ on the digital display. Water meter is without any buttons with LCD display. Legally non-relevant part of communication with meter is possible by NFC sensor connected on the register.

Ultrasonic water meter has a separation of software. Non-legally relevant parts have no inadmissible influence on legally relevant software, measured data or specific parameters.

The version of SWs and CRCs are displayed in the auto-rounding menu on LCD display in the time period in the form:

- CRC of legally relevant part
- SW version of legally relevant part

The water meters type sonico NANO displays the indication of each volume on the display every two minutes – separately delivered volume for reverse flow and separately delivered volume for forward flow. The permanently shown delivered volume is the difference between two delivered volumes (for reverse and forward flow).

The water meters type sonico NANO can be equipped by impulse module which is not part of this certificate. The water meters type sonico NANO are by powered mains battery 3.6V.

The water meters shall be installed to operate in any positions.

Marking and inscriptions

The water meters types sonico NANO shall be clearly and indelibly marked with the following information:

- Water meter type
- Unit of measurement (m3) (on display)
- Numerical value Q3 in m3/h (Q3 \times . \times) and the ratio Q3 / Q1.
- EU-type examination certificate number
- Manufacturer's name, registered trade name or registered trade mark
- Year of manufacture, two last digits of the year of manufacture, or the month and year of manufacture
- Serial number (as near as possible to the indicating device)
- Direction of flow, by means of an arrow (on display)
- Maximum admissible pressure (MAP ××)
- The temperature class $(T\times\times)$
- The pressure loss class ($\Delta p \times \times$)
- The installation sensitivity class (Ux Dx)
- Environmental classification (M)
- Electromagnetic environmental class (E2)
- Type approval sign according to national regulations

These markings shall comply with the requirements of OIML R 49 and shall be visible without dismantling the water meter after the instrument has been placed on the market or put into use.

Characteristics

Basic technical data of water meters types sonico NANO:

Manufacturer:	GWF AG							
Model number:	sonico Nano							
Nominal diameter:	15	20						
Type details:								
Q ₁ [m ³ /h]:								
Q_2 [m ³ /h]:	floymator and above in Table D.							
Q ₃ [m ³ /h]:	Showhates are shown in Table Ba. $\leq 1000^{-1}$ for	sic metrological data (flowrates) Q ₃ =2.5m ³ /h						
Q ₄ [m ³ /h]:	$\leq 630^{-1}$ for ($Q_3 = 1.6 \text{m}^3/\text{h}$						
Q ₃ /Q ₁ :								
Q ₂ /Q ₁ :	1.	.6						
Q3/Q4:	1.2	25						
Measuring principle:	ultras	sonic						
Accuracy class:	2	2						
Maximum permissible error for the lower flowrate zone (MPE $_{l}$):	±5	%						
Maximum permissible error for the upper flowrate zone (MPE $_{u}$):	±2	%						
Temperature class:	T50							
Water pressure class:	MAI	P 16						
Pressure loss class:	Q ₃ 1.6 Др10 Q ₃ 2.5 Др16	Q ₃ 2.5 Δp16 Q ₃ 4.0 Δp25						
Maximum admissible temperature [°C]:	50	0						
Maximum admissible pressure [MPa]:	1.	6						
Orientation limitation:	an	у						
Indicating range – testing mode/user mode [m³]:	9 999 / 999 999							
Resolution of the indicating device testing mode/user mode $[m^3]$:	0.00001	/0.001						
Resolution of the device for rapid testing [pulse/dm³]:	10	00						
Resolution of the indicating device for rapid testing [m³]:	0.000	0001						
EUT testing requirements (OIML R 49-2:20)	13, 8.1.8):							
Category:	Ultrasonic water meters, Coriolis v	water meters, fluidic water meters						
Case:	В							
nstallation details:								
Connection type (screw thread):	NPSM or G type 3/4", 7/8", 1"	NPSM or G type 7/8", 1", 1 1/4"						
Minimum straight length of inlet pipe [mm]:	0							
Minimum straight length of outlet pipe [mm]:	0							
Flow profile sensitivity class:	U0D0							
Flow conditioner (details if required):	No							

-							
any							
$\geq 105mm$ $\geq 105mm$							
Designed to mea	isure						
M							
E2							
-25 °C /	70 °C						
Non replaceable b	pattery						
Type (battery, mains AC, mains DC) ¹ : Non replaceable battery $U_{\text{max}} (V)^{1}: \qquad \qquad 3.6$							
$U_{\min}(V)^{1}$: 1.9							
-							
16 years							
TOTAL CONTRACTOR OF THE PARTY O							
0.6.28 1.0.1							
0x854EBACF, 0x13 0x3A681C19, 0x1d							
III. ATRI DET							
t-for-purpose measuring instrumen	nt (type P)						
	≥ 105mm Designed to med M E2 -25 °C / Non replaceable to 3.6 1.9 - 16 years 0.6.28 1.0.1 0x854EBACF, 0x13 0x3A681C19, 0x1dddddddddddddddddddddddddddddddddddd						

¹ The ratio Q_3 / Q_1 shall be chosen according to paragraph 4.1.4 of OIML R 49-1:2013

Basic metrological data (flowrates)

e metrological dat	a (HOW	110 111 11103)												
Manufacturer:	GWF	GWF AG												
Model name:	Sonico	Sonico NANO												
Nominal diameter:		15												
Type details:														
Q_1 [m ³ /h]:	0.040	0.040 0.063 0.032 0.050 0.025 0.040 0.020 0.031 0.016 0.025 0.013 0.02									0.020			
Q_2 [m ³ /h]:	0.064	0.100	0.051	0.080	0.041	0.064	0.032	0.050	0.026	0.040	0.021	0.032		
Q_3 [m ³ /h]:	1.600	2.500	1.600	2.500	1.600	2.500	1.600	2.500	1.600	2.500	1.600	2.500		
Q_4 [m ³ /h]:	2.000	.000 3.125 2.000 3.125 2.000 3.125 2.000 3.125 2.000 3.125 2.000 3.125 2.000 3.125										3.125		
Q_3/Q_1 :	4	0	5	0	6	3	8	0	10	00	12	25		

Manufacturer:	GWF	GWF AG												
Model name:	Sonico	Sonico NANO												
Nominal diameter:		15												
Type details:														
Q_1 [m ³ /h]:	0.010	0.010 0.016 0.008 0.013 0.006 0.010 0.005 0.008 0.004 0.006 0.003 0.005										0.005		
Q_2 [m ³ /h]:	0.016	0.025	0.013	0.020	0.010	0.016	0.008	0.013	0.006	0.010	0.005	0.008		
Q_3 [m ³ /h]:	1.600	2.500	1.600	2.500	1.600	2.500	1.600	2.500	1.600	2.500	1.600	2.500		
$Q_4 [m^3/h]$:	2.000	.000 3.125 2.000 3.125 2.000 3.125 2.000 3.125 2.000 3.125 2.000 3.125												
Q_3/Q_1 :	16	50	20	00	25	50	31	15	4(00	5(00		

Manufacturer:	acturer: GWF AG							
Model name:	Sonico	NANO						
Nominal diameter:					15			
Type details:								
Q_1 [m ³ /h]:	0.0025	0.004	0.003	0.0025				
Q_2 [m ³ /h]:	0.004	0.006	0.005	0.004				
Q_3 [m ³ /h]:	1.600	2.500	2.500	2.500				
Q_4 [m ³ /h]:	2.000	3.125	3.125	3.125				
Q_3/Q_1 :	63	0	800	1000				

Manufacturer:	GWF	GWF AG												
Model name::	Sonico	Sonico NANO												
Nominal diameter:		20												
Type details:														
Q_1 [m ³ /h]:	0.063	0.100	0.050	0.080	0.040	0.064	0.031	0.050	0.025	0.040	0.020	0.032		
Q_2 [m ³ /h]:	0.100	0.160	0.080	0.128	0.064	0.102	0.050	0.080	0.040	0.064	0.032	0.051		
Q_3 [m ³ /h]:	2.500	4.00	2.500	4.00	2.500	4.00	2.500	4.00	2.500	4.00	2.500	4.00		
Q_4 [m ³ /h]:	3.125	5.00	3.125	5.00	3.125	5.00	3.125	5.00	3.125	5.00	3.125	5.00		
Q_3/Q_1 :	4	0	5	0	6	3	8	0	10	00	12	25		

Manufacturer:	GWF	GWF AG											
Model name::	Sonico	Sonico NANO											
Nominal diameter:		20											
Type details:													
Q_1 [m ³ /h]:	0.016	0.016 0.025 0.013 0.020 0.010 0.016 0.008 0.013 0.006 0.010 0.005 0.000								0.008			
Q_2 [m ³ /h]:	0.025	0.040	0.020	0.032	0.016	0.026	0.013	0.020	0.010	0.016	0.008	0.013	
Q_3 [m ³ /h]:	2.500	4.00	2.500	4.00	2.500	4.00	2.500	4.00	2.500	4.00	2.500	4.00	
Q_4 [m ³ /h]:	3.125	5.00	3.125	5.00	3.125	5.00	3.125	5.00	3.125	5.00	3.125	5.00	
Q_3/Q_1 :	16	160 200 250 315 400 500									00		

Manufacturer:	GWF A	GWF AG											
Model name:	Sonico	onico NANO											
Nominal diameter:		20											
Type details:													
Q_1 [m ³ /h]:	0.004	0.006	0.005	0.004									
Q_2 [m ³ /h]:	0.006	0.010	0.008	0.006									
Q_3 [m ³ /h]:	2.500	4.00	4.00	4.00									
Q_4 [m ³ /h]:	3.125	5.00	5.00	5.00									
Q_3/Q_1 :	63	80	800	1000									

Securing components and verification marks

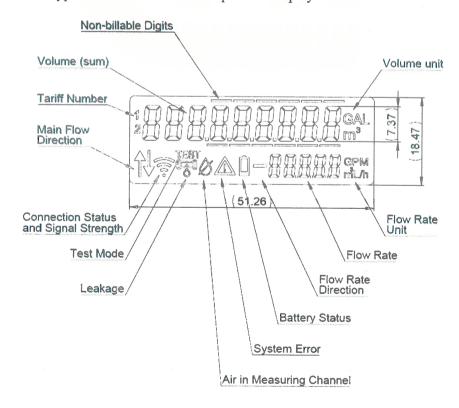

The sonico NANO meters have to be sealed by connecting the plastic seal on the plastic meter cover. The plastic seal is part of the body of the water meter in the form of a plastic frame that holds glass of display on the body of the water meter. The water meter cannot be accessed without damaging seal.

Figure: 1 View on water meter types sonico NANO, display, sealing - example

Figure: 2 Water meter types sonico NANO – description of display

